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Abstract

A fundamental theoretical investigation is conducted for the molecular weight distribution formed in free-radical and living copolymer-
izations with macromonomers by using the random sampling technique. General analytical expressions for the number- and weight-average
molecular weight developments are obtained. The full molecular weight distribution functions are presented for some simpler cases with low
mole fractions of macromonomers. The present theoretical analysis provides a great insight into the complex molecular buildup processes,
and thus leads to a better control of the graft copolymers.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In general, graft copolymers are special polymers and are
expensive to produce commercially. However, the introduc-
tion of branches onto polymer chains facilitates one to con-
trol the processability and rheological properties greatly. In
addition, copolymers have advantages in obtaining a better
balance of properties for commercial applications.

Copolymerization with a macromonomer is considered
an effective method to produce well-defined graft copoly-
mers, and it is usually claimed that this technique offers
better control than procedures involving ‘grafting onto’
and ‘grafting from’ techniques [1]. There have been numer-
ous publications concerning experimental investigations of
copolymerization with macromonomers [1,2]. On the other
hand, however, only a small number of theoretical studies
that provide basic principles in controlling nonlinear struc-
ture formation have been published so far [3–5].

In controlling the properties of graft copolymers, one
needs to consider, at least, the chemical composition distri-
bution and the molecular weight distribution (MWD). Stejs-
kal et al. [3,4] derived analytical expressions for the
instantaneous chemical composition distribution formed in
free-radical copolymerization with a macromonomer, when
both backbone and macromonomer chains conform to the
Schulz–Zimm distribution (or the branch chains with a uni-
form distribution). They showed a basic strategy to obtain
the MWD functions [3]. However, the distribution functions

were not given in a closed form. Quite recently, Zhu et al.
[5] obtained the analytical formulae for the instantaneous
MWD [more strictly, the distribution in terms of chain
length (degree of polymerization)] formed in free-radical
copolymerization, on the basis of the integro-differential
equation, similar to that developed by Saito [6], under con-
ditions where the backbone chains follow the most probable
distribution and the macromonomer chains conform to the
most probable distribution or a uniform distribution. Gu et
al. [7] considered the cases of the branch chains having
uniform and Schulz–Zimm distributions, in a more general
context of comb-branched copolymers. Their chain length
distribution functions are given, however, by the bivariate
distributions of backbone and branch chain lengths sepa-
rately, not as a function of the total chain length of the
comb polymers. Concerning the average chain lengths, the
averages have been derived exclusively from the full chain
length distribution functions, and therefore, they are given
only for several limited cases.

In this work, the random sampling technique [8] is used to
investigate the MWD formed in copolymerization with a
macromonomer. In this technique, no abstract mathematics
are required. Both free-radical and living copolymerizations
are considered in the present report. Simple analytical
expressions are given for the number- and weight-average
molecular weights that can be applied to any distribution of
both backbone and macromonomer chains. For the special
cases considered by Zhu et al. [5], the present solutions
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reduce to their equations. As for the full MWD, we restrict
ourselves to some simpler cases in which analytical expres-
sions can be obtained in a straightforward manner. (More
general cases can be solved by using a Monte Carlo method,
as shown elsewhere [9].) The differences in the molecular
weight and the chain length distributions are highlighted for
the cases where the average molecular weights of mono-
meric units in backbone and macromonomer chains are
significantly different.

2. Average molecular weights

2.1. Average molecular weights of branch chains

Consider the copolymerization of a small monomer (M1)
and macromonomer (M2). There are two types of linear
chains in graft copolymers; backbone chains and branch
chains. In this report, the terminal functional unit (double
bond) of a macromonomer that has copolymerized is
regarded as belonging to the backbone chain (chain A),
not the branch chain (chain B), as shown in Fig. 1. This is
not a requirement for the present theory to be applied;
however, this treatment facilitates the later development
significantly. Obviously, when the chain length (degree of
polymerization) of the macromonomer is large enough, the
average chain length of the branch chain is approximately
equal to that of the macromonomer; however, if the macro-
monomer chains are not long enough, one needs the follow-
ing modification.

Suppose that the number- and weight-average chain
lengths of macromonomers are given byP̄np,2 and P̄wp,2,
respectively. The subscripts ‘np’ and ‘wp’ are used to repre-
sent the number- and weight-average of primary chains,
respectively, and the subscript ‘2’ is used for the macro-
monomer. Within the macromonomer molecules that are
incorporated into graft copolymers, the terminal functional
units belong to the backbone polymer chain. Therefore, the
number-average chain length of branch chains,Pnp,B is
simply given by:

P̄np, B ¼ P̄np, 2 ¹ 1 (1)

As shown in Appendix A, the weight-average chain length
of the branch chain,P̄wp,B is given by:

P̄wp,B ¼ (P̄wp,2 ¹ 1)(P̄np,2=P̄np,B) ¹ 1 (2)

Similarly, denoting the number- and weight-average mole-
cular weights of the macromonomers byM̄np,2 and M̄wp,2,
respectively, the number- and weight-average molecular
weights of branch chains are given by:

M̄np, B ¼ M̄np,2 ¹ m2, f (3)

M̄wp,B ¼ (M̄wp,2 ¹ m2, f )(M̄np,2=M̄np, B) ¹ m2, f (4)

wherem2,f is the molecular weight of the terminal functional
unit.

2.2. Branching density

The branching density,r, is defined as the fraction of the
unit that bears a tribranch point within the backbone chain.
For free-radical copolymerization with a macromonomer,
the branching density of backbone polymer chains formed
instantaneously is given by:

r ¼ F2 (free-radical copolymerization) (5)

whereF2 is the instantaneous mole fraction of M2 incorpo-
rated into backbone chains.

For free-radical copolymerization, ther-value is differ-
ent, depending on the birth time of the backbone polymer
chains. The branching density,r of the backbone polymer
chains formed at a given time, can be obtained on the basis
of the appropriate copolymerization model, such as the
terminal and penultimate models. In free-radical polymer-
ization, the backbone chains, once formed, are dead and do
not change their structure during polymerization; however,
the branching density and the branched structure of the
newly formed polymers are, in general, different from
those of the previously formed ones. We derive the analy-
tical expressions for the average molecular weights for the
instantaneous MWDs, with those for the accumulated copo-
lymers being obtained through the integration of the instan-
taneous averages.

For living copolymerization, the compositional drift
occurs along the growing backbone polymer chain. In this
case, the expected branching density (averaged along the
chain) is the same for all backbone chains, and the branch-
ing density is given by:

r ¼ F̄2 (living copolymerization) (6)

whereF̄2 is the accumulated mole fraction of M2 incorpo-
rated into backbone chains.

In living copolymerization, the branching density of the
backbone chains changes during polymerization; however,
the expected branching density is the same for all backbone
chains.

To facilitate the theoretical treatments of the molecular
weights, rather than chain lengths, let us define branching

Fig. 1. Schematic drawing for the definition of the backbone and branch
chains in the present report. Note that the terminal functional unit of the
macromonomer becomes a part of the backbone chain, not the branch chain
in the present definition.
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density with respect to the molecular weight of backbone
chains as follows:

r9 ¼
r

(1¹ r)m1 þ rm2, f
(7)

wherem1 is the molecular weight of M1.
In this report, we consider the cases where the number of

branch points on a backbone polymer chain conforms to the
binomial distribution, without any preferential incorpora-
tion of branch chains into any backbone chain, i.e. we
assume that nonrandom situations, such as that smaller
branch chains tend to be connected to smaller backbone
chains, do not occur. For free-radical copolymerization,
the binomial distribution assumption can be applied strictly
for the instantaneously formed polymers when the copoly-
merization is ideal (in the terminal model, the product of the
reactivity ratios,r 1r 2 ¼ 1), and it is a good approximation
when the mole fraction of the macromonomer is small
enough. Because the molecular weight of the macromono-
mer is usually much larger than that for the small monomer
(M 1), the mole fraction of the macromonomer (M2) is quite
small in most copolymerization cases.

For a batch living copolymerization, the assumption that
the number of branch points on a backbone polymer chain
follows the binomial distribution was shown to be a reason-
able approximation when the branching density is small
enough [10]. Note that because only the number of branch
chains for a given backbone chain matters in terms of the
MWD, the obtained MWD is equivalent to that formed in
the random incorporation of branch chains with branching
density,r ¼ F̄2, when the binomial distribution assumption
is valid for the number of branch points.

Therefore, the analytical expressions derived in the
following sections can be applied both for free-radical and
living copolymerization with usual polymerization
conditions.

2.3. Number-average molecular weight

In the present theoretical development of the fundamental
equations, the unreacted macromonomers are not consid-
ered as polymers, and all polymer molecules are either
comb polymers (true copolymer) or ungrafted backbone
polymers, as was considered by other researchers [3–5].

The number-average chain length is the expected chain
length when a polymer molecule is selected on a number
basis. In the present reaction system, the selection on a
number basis can be conducted by selecting a chain end
of the backbone chain randomly. Suppose that we have
selected the chain end of a backbone chain as shown in
Fig. 2. Because the selection is made on a number basis,
the expected chain length of this backbone chain is the
number-average chain length of the backbone chain,P̄np,A.
(The subscript A denotes the backbone polymer chains, as
was shown in Fig. 1.) The expected number of branch points
on this backbone chain isP̄np,Ar. Because only the terminal

functional group of a macromonomer can react, the incor-
porated branch chains are considered to be chosen on a
number basis. The expected chain length of each branch
chain is, therefore,P̄np,B. The total expected chain length
when a polymer molecule is chosen on a number basis,
which is equal to the number-average chain length of the
polymers,P̄n is given by:

P̄n ¼ P̄np, A(1þ rP̄np, B) (8)

Similar reasoning leads to the number-average molecular
weight,M̄n as follows:

M̄n ¼ M̄np, A(1þ r9M̄np,B) (9)

For a batch free-radical copolymerization, the number-
average chain length of the accumulated polymers,Pn,
when the total monomer conversion on a molar basis isx,
is given by:

Pn ¼
xw∫xw

0

dxw

P̄n

¼
xw(1þ f 0

2 P̄np,B)∫x

0

1þ F2P̄np, B

P̄np,A(1þ F2P̄np,B)

� �
dx

(10)

where f 0
2 is the initial mole fraction of M2 and xw is the

monomeric unit-based conversion defined by:

xw ¼
x(1þ F̄2P̄np,B)

1þ f 0
2 P̄np, B

(11)

Similarly, the number-average molecular weight of the
accumulated polymers,Mn, is given by:

Mn ¼
x9

w∫x9
w

0

dx9
w

M̄n

¼
x9

w(f 0
1 m1 þ f 0

2 M̄np, 2)∫x

0

F1m1 þ F2M̄np,2

M̄np, A(1þ r9M̄np, B)

� �
dx

(12)

where f 0
1 is the initial mole fraction of M1, andx9

w is the
weight-based conversion defined by:

x9
w ¼

x(F̄1m1 þ F̄2M̄np,2)
f 0
1 m1 þ f 0

2 M̄np, 2
(13)

2.4. Weight-average molecular weight

The weight-average chain length is the expected chain

Fig. 2. Schematic drawing for the derivation of the number-average chain
length.
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length when a chain is selected on a weight basis. The
selection on a weight basis can be conducted by randomly
selecting one unit from all of the units bound to polymeric
species. When we choose one unit randomly, the chosen
unit must belong to either a backbone or a branch chain.
The probability of choosing a unit belonging to a backbone
chain is given by:

wA ¼
1

1þ rP̄np,B
(14)

Suppose that we have randomly chosen a unit that belongs
to a backbone polymer chain, as shown in Fig. 3(a). Because
the selection is conducted on a weight basis, the expected
chain length of the selected backbone chain is the weight-
average chain length of the backbone polymer chains,P̄wp,A.
The expected number of the connected branch chain is
P̄wp,Ar. Because only the terminal functional group on the
macromonomer reacts, the expected chain length of each
branch chain is the number-average chain length of the
branch chains,P̄np,B. The total expected number of units
(degree of polymerization), given a unit belonging to a
backbone chain that has been chosen,P̄(A)

w , is given by:

P̄(A)
w ¼ P̄wp, A(1þ rP̄np, B) (15)

On the other hand, suppose that we have randomly chosen a
unit that belongs to a branch chain, as shown in Fig. 3(b).
Because the selection is conducted on a weight basis, the
expected chain length of the selected branch chain is the
weight-average chain length of the branch polymer chains,
P̄wp,B. This branch chain must be connected to a backbone
polymer chain. Because any unit on the backbone chain can
be connected, the connected backbone polymer chain is
considered to be selected on a weight basis; therefore, the
expected chain length of the backbone chain isP̄wp,A. Then,
the expected number of the connected branch chains is
(P̄wp,A ¹ 1)r. Here, (P̄wp,A ¹ 1) is used instead ofP̄wp,A,
because one unit on the backbone chain is connected to
the initially selected branch chain. The expected chain

length of each branch chain is the number-average chain
length of the branch chains,P̄np,B. Therefore, the expected
number of units, given a unit belonging to a backbone chain
that has been chosen,P̄(B)

w , is given by:

P̄(B)
w ¼ P̄wp,B þ P̄wp,A þ (P̄wp,A ¹ 1)rP̄np,B (16)

The total expected number of units when one unit is chosen
randomly, which is equal to the weight-average chain
length,P̄w, is given by:

P̄w ¼ wAP̄(A)
w þ (1¹ wA)P̄(B)

w ¼ P̄wp,A(1þ rP̄np,B)

þ
rP̄np,B(P̄wp, B ¹ rP̄np,B)

1þ rP̄np,B
ð17Þ

Similar reasoning leads to the weight-average molecular
weight,M̄w, as follows:

M̄w ¼ M̄wp, A(1þ r9M̄np,B) þ
r9M̄np,B(M̄wp,B ¹ r9M̄np,B)

1þ r9M̄np,B

(18)

When the branching density is small enough, Eq. (17)
reduces to:

P̄w > P̄wp,A(1þ rP̄np,B) þ
rP̄np,BP̄wp,B

1þ rP̄np, B
(for r p 1) (19)

In this case, the polydispersity index (D ; P̄w/P̄n) is given
by:

D > DA þ DB
h

1þ rP̄np, B

� �2

rP̄np,A (for r p 1) (20)

whereDA ¼ P̄wp,A/P̄np,A, DB ¼ P̄wp,B/P̄np,B, andh ¼ P̄np,B/
P̄np,A.

Zhu et al. [5] obtained the polydispersity index on the
basis of the full chain-length distribution function under
two cases: (i) where both backbone and branch chains fol-
low the most probable distribution (DA ¼ DB ¼ 2); and (ii)
where the backbone chains have the most probable

Fig. 3. Schematic drawing for the derivation of the weight-average chain length.
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distribution (DA ¼ 2) and the branch chains have a uniform
distribution (DB ¼ 1). Eq. (20) reduces to the equations
derived by Zhu et al. [5] under these special conditions.

For batch free-radical copolymerizations, the weight-

average chain length of the accumulated polymers,Pw,
when the total monomer conversion isx, is given by:

Pw ¼
1
xw

∫x

0
P̄w

dxw

dx

� �
dx

¼
1

xw(1þ f 0
2 P̄np,B)

∫x

0
P̄w(1þ F2P̄wp, B)dx ð21Þ

For the reactor operations other than a batch reactor, one can
obtainPw by properly integratingP̄w, taking account of the
residence time distribution.

Similarly, the weight-average molecular weight of the
accumulated polymers,Mw is given by:

Mw ¼
1

x9
w

∫x9
w

0
M̄wdx9

w

¼
1

x9
w( f 0

1 m1 þ f 0
2M̄np,2)

∫x

0
M̄w(F1m1 þ F2M̄np, 2)dx ð22Þ

2.5. Illustrative calculations

The first example is a free-radical copolymerization. To
illustrate a very fundamental feature of the graft copoly-
mers, let us assume that the MWD of backbone chains do
not change during polymerization. The parameters used for
the calculation are as follows:P̄np,A ¼ 200; P̄wp,A ¼ 400;

P̄np,B ¼ 100;P̄wp,B ¼ 110; and the initial mole fraction of the
macromonomer,f 0

2 ¼ 0:01. We used the terminal model for
the copolymerization, and the product of the reactivity ratios
(r 1r 2) is set to be unity. (Because the mole fraction of the
macromonomer is small enough, ther 2-value has minor
effects on the copolymer composition.)

Fig. 4 shows the number- and weight-average chain
length developments of the accumulated polymers during
free-radical copolymerization. Eqs. (10) and (21) are used
for the calculations. The average chain lengths change
significantly during polymerization, especially when the
reactivity ratio,r 1, is small, i.e. when the macromonomers
are preferentially incorporated into polymer molecules.

The second example is a batch living copolymerization.
Strictly, the formulation of the MWD in living copolymer-
ization is not an easy task even for the linear polymer for-
mation [11]. However, at least when the mole fraction of M2

is much smaller than unity, the backbone chain length
distribution would be approximated well by the Poisson
distribution in a batch polymerization. Then, the number-
and weight-average chain lengths of the backbone chains at
conversionx is given by:

P̄np,A ¼ ([M]0=[I ]0)x (23)

P̄wp,A ¼ P̄np,A þ 1 (24)

where [M] 0 is the initial total monomer concentration, and
[I] 0 is the initiator concentration. (Note that the initiator
units are not included in counting the chain length in the
above equations.)

Fig. 5 shows the calculated weight-average chain length
developments under conditions: [M] 0/[I ] 0 ¼ 200; P̄np,B ¼

100; P̄wp,B ¼ 110; and f 0
2 ¼ 0:01. We used the terminal

model to describe the copolymer composition development.
Because the chain lengths of backbone chains increase with
polymerization, the average chain length becomes larger as
polymerization proceeds.

Fig. 4. Calculated number- and weight-average chain length developments
of the accumulated polymers during free-radical copolymerizations under
conditions: P̄np,A ¼ 200; P̄wp,A ¼ 400; P̄np,B ¼ 100; P̄wp,B ¼ 110; and
f 0

2 ¼ 0:01.

Fig. 5. Calculated weight-average chain length development in living copo-
lymerizations under conditions: [M] 0/[I l 0 ¼ 200;P̄np,B ¼ 100;P̄wp,B ¼ 110;
andf 0

2 ¼ 0:01.
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3. Molecular weight distribution

The random sampling technique can be used to obtain the
full MWD functions. Both the number- and weight-based
MWD can be obtained directly through the random
sampling technique [8]. In the present reaction system, it
is easier to derive number-based MWD, because we can
sample polymer molecules on a number basis by selecting
a chain end of the backbone chain randomly. Fig. 6 shows
some examples of the polymers withk branch chains. In the
present theoretical derivation, we consider only the cases
where the branching density is much smaller than unity,
i.e. r p 1.

The MWD of a graft copolymer system is the sum of the
fractional MWDs containing 0,1,2,… branches, and the
number fraction distributionN(r), where r is the chain
length, is given by:

N(r) ¼
∑̀
k¼ 0

Nk(r) (25)

where Nk(r) is the fractional number-based chain length
distribution containingk branch points.

To obtain a polymer molecule without a branch point
(k ¼ 0) by randomly sampling one chain end of the back-
bone chain, the selected backbone chain must not possess
any branch points. The fractional number-based chain
length distribution,N0(r) is given by:

N0(r) ¼ (1¹ r)rNp,A(r) (26)

whereNp,A(r) is the number-based chain length distribution
of backbone chains.

Next we consider the cases withk ¼ 1. When we select
one chain end randomly, as shown in Fig. 6, the backbone
chain length that involves this particular chain end follows
Np,A(r). A branched polymer molecule with chain lengthr
can be formed when a backbone with chain lengths is
connected with a branch chain with chain lengthr ¹ s.
Under condition,r p 1, the number of branch points on a

backbone chain follows the binomial distribution both for
free-radical and living [10] copolymerization. Therefore,
the fractional number-based chain length distribution with
k ¼ 1, N1(r) is given by:

N1(r) ¼
∑r ¹ 1

s¼ 1
Np, A(s)

s

1

 !
r(1¹ r)s¹ 1Np,B(r ¹ s)

>r

∫r

0
sexp( ¹ rs)Np,A(s)Np,B(r ¹ s)ds ð27Þ

When the sampling is conducted on a number basis, the
apparent formulation is essentially the same as the conven-
tional methods in which the concentration of each type of
polymeric species is considered [7].

Similarly, N2(r) is given by:

N2(r) ¼
∑r ¹ 1

s1 ¼ 1
Np,A(s1)

s1

2

 !
r2(1¹ r)s1 ¹ 2

3
∑r ¹ s1 ¹ 1

s2 ¼ 1
Np,B(s2)Np,B(r ¹ s1 ¹ s2)

>
r

2!

∫r

0
s2
1exp( ¹ rs1)Np,A(s1)

3
∫r ¹ s1

0
Np,B(s2)Np,B(r ¹ s1 ¹ s2)ds2ds1 ð28Þ

In general,Nk(r) is given by:

Nk(r)>
rk

k!

∫r

0
sk
1exp( ¹ rs1)Np, A(s1)

∫r ¹ s1

0
Np,B(s2)

…
∫r

0
¹

∑k¹ 1

i ¼ 1
siNp,B(sk)Np,B(r ¹

∑k

i ¼ 1
si)

3 dskdsk¹ 1
…ds2ds1 ð29Þ

Denoting the number-based molecular weight distribution
of the backbone and branch chains byN9

p,A(M) andN9
p, B(M),

respectively, the fractional number-based molecular
weight distribution containingk branch points,N9

k(M) is
given by:

N9
k(M)>

(r9)k

k!

∫M

0
Sk

1exp( ¹ r9S1)N9
p,A(S1)

∫M ¹ S1

0
N9

p,B(S2)

…
∫M

0
¹

∑k¹ 1

i ¼ 1
SiN

9
p,B(Sk)N

9
p,B

3 (M ¹
∑k

i ¼ 1
Si)dSkdSk¹ 1

…dS2dS1 ð30Þ

The analytical solutions for two simplified cases are shown
below.

3.1. Case 1: both backbone and branch chains conform to
the most probable distribution

We first consider the case where the number fractionFig. 6. Schematic representation of the comb structure withk branch chains.
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distributions of the backbone and branch chains are given by
the following equations:

Np,A(r) ¼
1

P̄np,A
exp ¹

r

P̄np,A

� �
(31)

Np,B(r) ¼
1

P̄np,B
exp ¹

r

P̄np,B

� �
(32)

In free-radical polymerization, the instantaneous chain
length distribution of backbone chains conforms to the
most probable distribution without contribution of bimole-
cular termination by combination. (The chainlength-
dependent kinetics are not considered in the present report.)

For example,N3(r) can be obtained as follows:

N3(r)>
r3

3!

∫r

0
s3
1exp( ¹ rs1)Np,A(s1)

∫r ¹ s1

0
Np,B(s2)

3
∫r ¹ s1 ¹ s2

0
Np,B(s3)Np,B(r ¹ s1 ¹ s2 ¹ s3)ds3ds2ds1

¼
r3exp( ¹ r =P̄np,B)
3!2!P̄np, A(P̄np,B)3

∫r

0
s3(r ¹ s)2

exp ¹
y

P̄np, AP̄np, B
s

� �
ds ð33Þ

where:

y¼ rP̄np,AP̄np,B þ P̄np,B ¹ P̄np, A (34)

In general, one obtains:

Nk(r) ¼
rkexp( ¹ r=P̄np,B)

k!(k¹ 1)!P̄np,A(P̄np,B)k

∫r

0
sk(r ¹ s)k¹ 1

exp ¹
y

P̄np,AP̄np,B
s

� �
ds ð35Þ

Eq. (35) can be solved to give:

Nk(r) ¼
p1=2r1=2þ k

2P̄np,Ak!
r

P̄np,B

� �k y

P̄np,AP̄np,B

� �1=2¹ k

exp ¹
yþ 2P̄np,A

2P̄np,AP̄np,B
r

� �

3

�
I ¹ 1=2þ k

ry

2P̄np,AP̄np, B

� �
¹ I1=2þ k

ry

2P̄np,AP̄np, B

� ��

¼
r2k

P̄np, A(2k)!
r

P̄np, B

� �k

exp ¹
1

P̄np,A
þ r

� �
r

� �
3 1F1 k; 2kþ 1; ry=(P̄np, AP̄np, B)

� �
ð36Þ

whereI n(z) is the modified Bessel function of the first kind,
and 1F1[a; b; z] is the Kummer confluent hypergeometric
function. The whole chain length distribution can be
obtained by summing upNk(r) for all k-values, as described
by Eq. (25).

The number- and weight-average chain lengths within the
polymeric species containingk branches are given by:

P̄n,k ¼

∫`

0
rNk(r)dr∫`

0
Nk(r)dr

¼
P̄np, A þ kz

1þ rP̄np, A
(37)

P̄w,k ¼

∫`

0
r2Nk(r)dr∫`

0
rNk(r)dr

¼
(1þ k) 2(P̄np, A)2 þ kz2� 	
(1þ rP̄np, A)(P̄np,A þ kz)

(38)

wherez ¼ yþ 2P̄np, A ¼ rP̄np,AP̄np,B þ P̄np,A þ P̄np,B.
Eqs. (36)–(38) agree with those obtained on the basis of

the integro-differential equation by Zhu et al. [5].
In terms of the molecular weight rather than chain length,

the following equations can be derived:

N9
k(M) ¼

M2k

M̄np,A(2k)!
r9

M̄np, B

� �k

exp ¹
1

M̄np,A
þ r9

� �
M

� �
3 1F1 k; 2kþ 1;My9=(M̄np,AM̄np, B)

� �
ð39Þ

M̄n,k ¼
M̄np,A þ kz9

1þ r9M̄np,A
(40)

M̄w,k ¼
(1þ k) 2(M̄np,A)2 þ k(z9)2� 	
(1þ r9M̄np, A)(M̄np, A þ kz9)

(41)

where y9 ¼ r9M̄np,AM̄np, B þ M̄np,B ¹ M̄np,A and
z9 ¼ r9M̄np, AM̄np,B þ M̄np, A þ M̄np,B.

Fig. 7(a) shows the calculated weight-based chain length
distribution as well as the fractional weight-based chain
length distribution containingk branches, under conditions:
P̄np,A ¼ 100; P̄np,B ¼ 200; andr ¼ 0.005. Suppose that the

Fig. 7. Weight-based chain length and molecular weight distributions when
both backbone and branch chains conform to the most probable distri-
bution, under conditions:P̄np,A ¼ 100; P̄np,B ¼ 200; r ¼ 0.005; mA ¼

100; andmB ¼ 300.
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average molecular weights of the monomeric unit in the
backbone and branch chains aremA ¼ 100 andmB ¼ 300,
respectively. In this case, the weight-based molecular
weight distribution is shown in Fig. 7(b). When the differ-
ence in the molecular weights of the monomeric units in the
backbone and branch chains are significantly different, the
molecular weight distribution looks different substantially,
contrary to the copolymerization of a small monomer pair.
One may need to pay careful attention to interpret the
experimentally obtained MWDs.

3.2. Case 2: backbone chains with the Schulz–Zimm
distribution and branch chains with a uniform distribution

When the branch chains conform to a uniform distri-
bution, a general expression forNk(r) reduces to:

Nk(r) ¼ rk(1¹ r)r ¹ kP̄np, B ¹ k
r ¹ kP̄np,B

k

 !
Np,A(r ¹ kP̄np, B)

>rkexp ¹ r(r ¹ kP̄np,B)
� 	

3
(r ¹ kP̄np, B)k

k!
Np,A(r ¹ kP̄np, B) ð42Þ

We consider the cases where the backbone chains conform
to the Schulz–Zimm distribution, as shown below:

Np,A(r) ¼
jj

P̄np,AG(j)
r

P̄np,A

� �j ¹ 1

exp ¹
jr

P̄np,A

� �
(43)

where j is a parameter indicating the narrowness of the
distribution breadth, i.e.j ¼ P̄np,A =(P̄wp, A ¹ P̄np,A).

With j ¼ 1, the Schulz–Zimm distribution reduces to the
most probable distribution. In free-radical polymerization, if
bimolecular termination by combination is the dominant
chain stoppage mechanism, the instantaneous chain length
distribution of backbone chains are given by the Schulz–
Zimm distribution with j ¼ 2. In addition, when the
number-average chain length,P̄np,A is large enough, the
Poisson distribution agrees well with the Schulz–Zimm
distribution withj ¼ P̄np,A.

By substituting Eq. (43) into Eq. (42), one obtains:

Nk(r) ¼
rk(r ¹ kP̄np,B)kþ j ¹ 1

k!G(j)
j

P̄np,A

� �j

exp ¹ rþ
j

P̄np,A

� �
(r ¹ kP̄np,B)

� �
ð44Þ

Fig. 8 shows the calculated weight-based distributions of
chain lengths and molecular weights under conditions:
j ¼ 2; P̄np,A ¼ 100; P̄np,B ¼ 200; r ¼ 0.005;mA ¼ 100;
andmB ¼ 300. The chain length distribution profile is very
different from the molecular weight distribution. Note that
the conditionj ¼ 2 corresponds to the cases with free-
radical copolymerization when the combination termination
is the dominant chain stoppage mechanism. The present
distribution profile is for the instantaneous MWD, and the

accumulated MWD must be calculated by integrating the
instantaneous MWD numerically up to the given conversion
level. In addition, the unreacted macromonomers coexist in
the reaction mixture. (The accumulated MWD profiles
including unreacted macromonomers are shown in Ref. [9].)

For living copolymerization, one obtains the accumulated
MWD directly through Eq. (44). Fig. 9 shows the calculated
MWD development under conditions: [M] 0/[I] 0 ¼ 200;
P̄np,B ¼ 100; r 1 ¼ 1; andf 0

2 ¼ 0:01. (The present conditions
roughly correspond to the case whose, weight-average chain
length development is given by the solid line in Fig. 5.) In
the present calculation condition, the branching density is
kept constant while the backbone chain length increases
during polymerization. The whole chain length distribution
shifts to the larger chain length and, at the same time, the
peaks for the larger chain lengths (polymer molecules
with larger k-values) become larger with the progress of
polymerization.

Up to the present, the analytical solutions of the MWDs
have been derived only for the limited cases. For more
realistic polymerization conditions, it is straightforward to
combine the concept of the random sampling technique with
the Monte Carlo simulation method, as shown elsewhere
[9].

4. Conclusions

The molecular weight distribution formed in free-radical
and living copolymerization with macromonomers is

Fig. 8. Weight-based chain length and molecular weight distributions when
the backbone chains follow the Schulz–Zimm distribution withj ¼ 2 and
the branch chains are uniform, under conditions:P̄np,A ¼ 100;P̄np,B ¼ 200;
r ¼ 0.005;mA ¼ 100; andmB ¼ 300.

Fig. 9. Weight-based chain length distribution development during living
copolymerization with macromonomers having a uniform distribution
under conditions: [M] 0/[I] 0 ¼ 200; P̄np,B ¼ 100; r 1 ¼ 1; andf 0

2 ¼ 0:01.
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investigated theoretically using the random sampling tech-
nique. General analytical solutions for the number- and
weight-average molecular weight developments are
obtained. These expressions can be used irrespective of
the MWD of both the backbone and branch polymer chains.

The analytical solutions of the full molecular weight dis-
tribution functions are presented for some simpler distribu-
tions of the backbone and branch chains. The differences in
the molecular weight and the chain length distributions are
highlighted in the illustrative calculations.

For free-radical copolymerization, the present analytical
solutions give the instantaneous MWDs, and the accumu-
lated MWDs that are obtained in experiments can be calcu-
lated by properly integrating the instantaneous MWDs. For
living polymerization, the present analytical expressions
directly provide the MWD of the whole formed polymers.
The present analytical solutions would provide a great
insight in designing the comb-branched graft polymers
formed in the copolymerization with macromonomers.
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Appendix A Average chain lengths of branch chains

It is straightforward to derive the number- and weight-
average chain lengths of branch chains,P̄np,B andP̄wp,B, on
the basis of the number-based chain length distribution of

macromonomer chainsNp,2(r), as follows:

P̄np,B ¼
∑̀
r ¼ 1

(r ¹ 1)Np,2(r) ¼ P̄np, 2 ¹ 1 (A1)

P̄wp,B ¼

∑̀
r ¼ 1

(r ¹ 1)2Np,2(r)

∑̀
r ¼ 1

(r ¹ 1)Np,2(r)
¼

P̄np,2P̄wp, 2 ¹ 2P̄np,2 þ 1

P̄np,B

¼ (P̄wp,2 ¹ 1)(P̄np,2=P̄np,B) ¹ 1 ðA2Þ

To show the versatility of the random sampling technique,
we derive P̄wp,B from the point of view of the sampling
technique. Suppose that Fig. 10 shows all of the reacted
macromonomers. If one randomly chooses one unit from
all of the units shown in Fig. 10, the expected chain length
is the weight-average chain length of the macromonorners,
P̄wp,2. When such a selection is conducted, one must choose
either a unit belonging to: (a) a terminal unit group; or (b) a
group with a unit that becomes a branch chain in graft
copolymers. One would choose the terminal unit [belonging
to group (a)] with probability 1/P̄np,2. Given that this event
has happened, the expected chain length of the chosen
macromonomer is the number-average chain length of the
macromonomersP̄np,2, because this particular selection
process is equivalent to choosing a terminal unit randomly.
On the other hand, one would choose a unit other than the
terminal unit [belonging to group (b)] with probability 1¹
1/P̄np,2. In this case, this unit is selected on a weight basis
from the units belonging to group (b), and the expected
chain length of the macromonomer is the weight-average
chain length of the branch chains,P̄wp,B plus one (terminal
unit). Therefore, the weight-average chain length of the
macromonomersP̄wp,2 can be expressed by:

P̄wp,2 ¼ (1=P̄np, 2) 3 P̄np,2 þ (1¹ 1=P̄np,2)(P̄wp,B þ 1) (A3)

From Eqs. (1) and (A3), one obtains:

P̄wp,B ¼ (P̄wp,2 ¹ 1)(P̄np,2=P̄np,B) ¹ 1 (A4)
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Fig. 10. Schematic representation of macromonomers. The terminal func-
tional groups (a) are incorporated into the backbone chain, while the rest of
the monomeric units (b) belong to branch chains.
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